Solvability of Nonlinear Sequential Fractional Dynamical Systems with Damping
نویسندگان
چکیده
منابع مشابه
Solvability of Nonlinear Sequential Fractional Dynamical Systems with Damping
In this paper, we are concerned with the solvability for a class of nonlinear sequential fractional dynamical systems with damping infinite dimensional spaces, which involves fractional Riemann-Liouville derivatives. The solutions of the dynamical systems are obtained by utilizing the method of Laplace transform technique and are based on the formula of the Laplace transform of the Mittag-Leffl...
متن کاملNonlinear Dynamics of Duffing System with Fractional Order Damping
In this paper, nonlinear dynamics of Duffing system with fractional order damping is investigated. The four order RungeKutta method and ten order CFE-Euler methods are introduced to simulate the fractional order Duffing equations. The effect of taking fractional order on the system dynamics is investigated using phase diagrams, bifurcation diagrams and Poincare map. The bifurcation diagram is a...
متن کاملProbabilistic learning of nonlinear dynamical systems using sequential Monte Carlo
Probabilistic modeling provides the capability to represent and manipulate uncertainty in data, models, decisions and predictions. We are concerned with the problem of learning probabilistic models of dynamical systems from measured data. Specifically, we consider learning of probabilistic nonlinear state space models. There is no closedform solution available for this problem, implying that we...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولSome Solvability Theorems for Nonlinear Equations with Applications to Projected Dynamical Systems
The study of solvability of nonlinear equations defined in topological vector spaces is a fundamental problem considered in Nonlinear Analysis. This problem is so important because it is related to the study of solvability of differential or integral equations. The literature related to this subject is huge. See [1]–[4], [7], [10], [11], [17], [23]–[25] among the other papers and books publishe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Physics
سال: 2017
ISSN: 2327-4352,2327-4379
DOI: 10.4236/jamp.2017.52027